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Increasingly, mixed-effect fishery stock assessment models are being de v eloped where de viations about functional f orms of different processes 
are modelled as random effects and the extent of variance is estimated internal to the model. Concurrently, sampling variance parameters 
associated with likelihoods for fitting composition data within fisheries assessments are more often being estimated internal to the model as 
w ell. We e xamine the perf ormance of stock assessment models when multiple process v ariance and sampling v ariance terms are simultaneously 
estimated within assessment models. We specifically e xamine ho w assessment performance is affected by the choice of composition likelihood, 
the degree of o v erdispersion in composition data, o v erparameterization, and modelling v ariation on the wrong process. In doing so, we build a 
simulation containing o v erdispersion and correlations in composition data, directional variation in catchability and/or selectivity, and estimation 
models which include random effects and composition likelihoods with theoretically estimable variances. Results suggest that with standard data 
a v ailable in fisheries assessments, process variance parameters associated with some commonly emplo y ed methods and sampling variance 
parameters can be simultaneously estimated internal to an assessment, and performance greatly improves with increased composition data. 
Our results also suggest little downside to o v erparameterization of selectivity and catchability when the true process is not time-varying, which 
largely agrees with previous research. However, when a process is truly time-varying and the assessment models time-variation on a different 
process, namely when selectivity is time-varying and instead natural mortality is modelled as potentially time-v arying, w e find a risk of se v ere 
increases in bias and decreases in confidence interv al co v erage f or assessed quantities. T his bias and decrease in co v erage could, ho w e v er, be 
partially mitigated by also modelling time-variation on the correct process. 
Keywords: Stock Assessment, Composition Data, Age-structured models, Overdispersion, Mixed-effects, Process Error, Sampling Error, Process Variation. 
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Introduction 

The field of fisheries assessment develops population mod- 
els of fish and invertebrate stocks informed by various data 
sources in an effort to help inform management decisions 
(Dichmont et al., 2016 ). These data sources commonly include 
the total catch, the age or length composition of the catch, the 
catch rate of fishers, and similar data collected from research 

surveys. The population models are developed by statistically 
estimating key parameters to come up with the most plausible 
population and exploitation model of the specific fishery. The 
statistical estimation process compares predictions from the 
population model to observed data (under assumed observa- 
tion models), searching for the set of model parameters that 
maximize the likelihood of observing the data. The predic- 
tions will never exactly match the data due to several different 
sources of variability, the distinction of which is important. 

With a perfectly specified population and observation 

model, provided it is not feasible to census each data source,
the sole source of variability between model predictions and 

the observed data would be attributed to sampling variability,
which describes the expected variability from a statistical dis- 
tribution if the sampling process were repeated. This variabil- 
ity arises due to the act of taking a sample and not a census.
Received: 21 February 2023; Revised: 13 July 2023; Accepted: 12 August 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
onsidering random sampling variability as constituting the 
ole source of variability between model predictions and data 
s idealized and unrealistic. In reality, models are imperfect 
epresentations and discrepancies between models and obser- 
ations will vary beyond those attributed to sampling variabil-
ty alone. One reason for this is because population models
re simply , and necessarily , approximations of reality. They
ften characterize quantities or rates using mean processes 
nd, in the limit, are at least approximating continuous val-
es. For example, fisheries assessments often characterize the 
atural mortality rate of fish as constant with respect to time,
hich does not account for a myriad of unmodelled ecosystem

nd environmental processes that can cause this rate to vary
rom year to year. Although it may be a reasonable and nec-
ssary approximation if the variation is small (and stationary 
n time), it will result in additional variation between model
redictions and observations. 
A related but somewhat different source of variability be- 

ween model predictions and data relates to the fact that mod-
ls can simply be incorrect representations of a system. This
an occur in fisheries assessments as mischaracterizations of 
he functional form of a relationship between two variables
e.g. stock and recruitment), inaccurate assumed values for pa- 
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ameters (e.g. natural mortality and growth), incorrect prob-
bility models for process or sampling variances, or misrep-
esenting the process of observing the data (e.g. unmodelled
ensity dependence in the relationship between an index in
bundance and population size, or measurement error such
s ageing and sizing error). 

In this investigation, we characterize the variability be-
ween predictions and data associated with models being
ncorrect representations of a system as model misspecifica-
ion and that associated with models approximating mean
rocesses as process variability. There is necessarily some
verlap between these two terms as one could argue that not
ccounting for process variation makes a model an incorrect
escription of the system. Hence together, model misspecifi-
ation and process variability collectively make up what we
efer to as model error, or all of the variation between model
redictions and data that is not due to random sampling
ariability. Model error, in addition to sampling variability
sampling error) make up the total error, or the total amount
f variability expected between the model predictions and
he observations. Importantly, there have been many different
haracterizations and categorizations of the components
aking up total error (Francis and Shotton, 1997 ; Hulson

t al., 2012 ; Maunder and Piner, 2015 ), and each have their
erit. The general structure is similar, often differing in the

ategorization of components that make up model error to
uit the specific study in question (e.g. categorizing into pro-
ess model components and observation model components,
nd potential error sources of each). 

The distinction of error is important because when fitting
 statistical model, an analyst must decide how much of the
otal variance between model predictions and data to allocate
o sampling error and to process variation, while acknowledg-
ng one or both variance components may be affected by some
evel of model misspecification. Further an analyst must de-
ide how to model process variation. The paradigm of mixed-
ffects and state-space modelling has proved increasingly use-
ul in fisheries assessment as a means to model process vari-
tion using random effects and potentially even estimate the
xtent of the variation internal to the model (Thorson, 2019 ).
lthough random effects are not novel to the field of statistics
nd fisheries assessment, recent advances in computation and
pproximation have allowed much more efficient develop-
ent and implementation of such models within the Template
odel Builder (TMB) programme (Kristensen et al., 2016 ).

n addition, research has suggested that for some datasets,
amely those pertaining to the proportions caught at age in
shery and survey samples (compositions), the sampling er-
or variance can also be estimated internal to an assessment
odel using specific likelihoods (Maunder, 2011 ; Albertsen et

l., 2016 ; Thorson et al., 2017 ; Fisch et al., 2021 ). 
The implications of getting either the total variance or its

onstituent components wrong are non-trivial. The relative
ontribution of the different components of total error, even
f the amount of total variance is approximately correct, can
ave important implications with respect to predicted popu-

ation responses to management. Consider a case where pro-
ess variation in the model (e.g. recruitment variation) is in-
orrectly attributed to increased sampling variation, or vice
ersa. In such a case, not only would standard assessment out-
ut used to make catch advice be affected, but also analyses
f risk, including population viability (Maunder, 2004 ) and
anagement strategy evaluations could be impacted. 
Being able to estimate sampling error variance for composi-
ion datasets and variances associated with process variation
sing mixed-effect models presents an opportunity for stock
ssessment modelling to discontinue iterative reweighting pro-
edures (Thorson, 2019 ). However, a number of factors con-
erning this opportunity have not been fully evaluated, such as
he estimability of multiple variance terms with standard data
vailable in fisheries assessments, the performance of general
ethods to account for process variation, the consequences of
isspecification, and the effect of the choice of sampling error

ikelihood for composition data. 
The choice of the sampling error likelihood relates to the

bility of different likelihoods used for fitting composition
ata to account for some degree of model error in addition
o sampling error. It has been shown that estimating the vari-
nce of sampling error for composition data internal to an
ssessment using the Dirichlet-multinomial or logistic-normal
ikelihoods can account for some degree of model error when
he model contains unmodelled process variation or model
isspecification (Fisch et al., 2021 ). That is, additional misfit
etween the predictions and data, which is actually due to un-
odelled processes, results in an increase in the estimated sam-
ling variability for composition data. The degree of inflated
stimated sampling variance can differ based on the observa-
ional likelihood chosen and the nature of the model error. For
xample, the logistic-normal was found to inflate sampling
ariance more when a large degree of model error existed com-
ared to the Dirichlet-multinomial (conditional on adequate
ample sizes), and this led to less biased estimates of quantities
mportant to management (Fisch et al., 2021 ). For this reason,
t has been argued that the estimation of sampling variance for
omposition data internal to an assessment can make a model
ore robust to model error (Francis, 2014 , 2017 ; Fisch et al.,
021 ). However, an alternative, although not a mutually ex-
lusive approach, is to explicitly model additional variation in
pecific influential processes, which may be giving rise to some
f the model error, using random effects. Explicitly modelling
rocess variation allows the effect of the variation to propa-
ate through the population dynamics model and influence the
t to other data sources. In contrast, attributing unaccounted
odel error as sampling error in the likelihood function only

mpacts predictions of the data related to the likelihood func-
ion (except, of course, through the influence on the parameter
stimates). Some studies suggest little downside to estimating
ime-varying processes when they are not present, and large
pside when they are present (Stewart and Monnahan, 2017 ;
ronin-Fine and Punt, 2021 ). However, others have suggested
ore caution, as Privitera-Johnson et al. (2022) found that
odelling time variation in a process (selectivity in this case)

ed to worse performance when there was no time variation
n that process within the operating model, and Szuwalski et
l. ( 2018 ) showed that modelling variation on the wrong pro-
ess can lead to poor management advice. Few studies have
lso considered the variance of the estimated quantity (confi-
ence interval coverage) or overdispersion and correlations in
ampling error for composition data, each of which may af-
ect one another (not accounting for overdispersion will lead
o overconfident intervals) and could lead to identifiability is-
ues (will one variance account for another). 

We pay particular interest to the modelling of composition
ata since in addition to having a theoretically estimable sam-
ling variance (when fit with certain likelihoods), it provides
nformation on the length/age of fish caught and information
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on the abundance of individual cohorts. Therefore, composi- 
tion data provides information on temporal variation in pro- 
cesses such as selectivity, recruitment, and mortality. Length 

composition data also provides information on temporal vari- 
ation in growth. Consequently, accounting for the misfit due to 

not modelling process variation in the likelihood function may 
be most relevant for composition data. In addition, the sam- 
pling process for composition data is often plagued by pseudo 

replication due to fish aggregation (e.g. schooling), leading to 

effective sample sizes that can be much less than the actual 
sample size even in the absence of model misspecification and 

unmodelled process variation, requiring the sampling variance 
to be estimated. For this reason, we were particularly inter- 
ested in the dynamic between the simultaneous estimation of 
process variation and sampling error for composition data in- 
ternal to an assessment model when there exists overdisper- 
sion and correlations in the data on top of variation in sys- 
tem’s processes and model misspecification. 

We structure a general simulation experiment in an attempt 
to provide insight on the topics presented by assessing the per- 
formance of stock assessment models when multiple process 
variance and sampling variance terms are simultaneously es- 
timated within the model. We specifically examine how as- 
sessment performance is affected by the choice of composi- 
tion likelihood, overdispersion and correlations in composi- 
tion data, overparameterization, and modelling variation on 

the wrong process. In doing so, we build a simulation oper- 
ating and sampling model containing overdispersion and cor- 
relations in composition data, directional variation in fishery 
catchability and/or fishery selectivity, and estimation models,
which include random effects (some of which are misspeci- 
fied) and composition likelihoods with theoretically estimable 
variances. 

Methods 

In this study, data are simulated from fine-scale spatially ex- 
plicit operating models that can produce composition data 
that are overdispersed and correlated, and fit using spa- 
tially aggregated assessment/estimation models. The spatially 
explicit operating models create variable (potentially time- 
variable) processes in selectivity and catchability using mech- 
anistic means, and the estimation models attempt to account 
for the variation in processes using general methods while 
being blind to the mechanism, in addition to accounting for 
overdispersion and correlations in sampling error using either 
the Dirichlet-multinomial or the logistic-normal likelihood for 
composition data. The goal was to simulate model error based 

on a mechanism in a way that is not captured in an assessment,
to avoid simulating data using some process and fitting them 

using the same process (Francis, 2012 ). 
We utilize the Red Snapper spatially explicit simulation 

operating model developed in Fisch et al. (2021) with mi- 
nor adjustments, and develop estimation models using TMB.
A full description of the operating model can be found in 

Appendix A . We briefly summarize the treatments related to 

the operating model (OM), the sampling model (SM), and 

those related to the estimation model (EM). We use the word 

“realized” to describe spatially aggregated qualities of the spa- 
tially explicit system. For example, realized catchability refers 
to the catchability of the whole stock, or the parameter that 
is commonly used in non-spatial assessments to describe the 
proportion of the stock caught per unit effort. 
perating model 

he spatially explicit age-structured operating model with a 
patially dynamic fishery is similar to that presented in Fisch et
l. (2021) and used many life history characteristics presented 

n the 2018 Gulf of Mexico red snapper assessment (SEDAR,
018 ). The exception to this was for natural mortality ( M ) of
sh from ages was 2–20, which was a function of length-at-
ge ( L a ) and set equal to M a = 0 . 099 

L 7 
L a 

(ages 0 and 1 used M
alues of 2 and 1.2). This exception was made to allow for its
otential estimation within the estimation models. Time series 
ere generated from 40 years of fishing following a 50-year
nfished period. The effort time series, which roughly corre- 
ates with fishing mortality, increased logistically for the first 
5% of the fishing time series length, followed by a linear de-
rease in effort for the last 25% of the fishing time series. 

perating model treatments 

perating model treatments included whether each of selec- 
ivity and catchability was directionally time-varying or not 
 Table 1 ). Directionally time-varying selectivity arises from the
M as a function of the gravity model, which determines the

patial allocation of effort. To make selectivity time-invariant,
ffort distribution in the OM is random with respect to space.
ote that the selectivity from year to year will still vary as
 function of stochastic fisher effort distribution over space; 
owever, this variability will be random with respect to time
hence, we often make use of the term “directional” variation 

o distinguish this). The apparent functional form of realized 

shery selectivity, which emerged from the OM with a gravity
odel effort distribution is dome-shaped ( Figure 1 ), due to the
ynamic combination of contact selectivity and spatial avail- 
bility. When a random effort distribution is implemented, this 
unctional form collapses to the contact selectivity, which is lo-
istic, as all fish are made spatially available. When necessary,
he dome-shaped functional form is preserved under a random 

ffort distribution scenario in the OM by changing contact 
electivity to be dome-shaped according to a six-parameter 
ouble-normal selectivity function ( Figure 1 , Appendix B ). 
Realized catchability ( q ) per unit effort, which emerges

rom the OM where the effort distribution is a function of
 gravity model is directionally time-varying if nominal catch- 
er-unit-effort (CPUE) is calculated. When the effort distribu- 
ion is made random with respect to space, the realized catcha-
ility is not directionally time-varying ( Figure 1 ). To develop a
ull factorial design involving selectivity and catchability in the 
Ms, we needed to create time-invariant catchability when 

he effort distribution was a function of a gravity model, and
irectionally time-varying catchability when the effort distri- 
ution was random. To achieve this, we utilized the realized q
alues from the gravity model OM to simulate a CPUE time
eries for the random effort OM, and realized q values from
he random effort OM to simulate a CPUE time series for the
ravity model OM. In total, this resulted in four different OM
reatments ( Figure 1 , Table 1 ). 

ampling models 

ata that were generated from the OM included the annual
atch, a fishery-dependent index of abundance, an age com- 
osition of the catch, and an index and age composition from
 survey available for the second half of the fishing time series.
bserved catch (removals) in each year of the time series was

imulated by drawing from a normal distribution with mean 
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Table 1. Simulation experimental design key. 

Notation Description 

Operating models 
OM1 Time-invariant selectivity and time-invariant catchability 
OM2 Time-invariant selectivity and time-varying catchability 
OM3 Time-varying selectivity and time-invariant catchability 
OM4 Time-varying selectivity and time-varying catchability 
Sampling models 
SM11 Annual sample size ∼100, randomly sampled from catch at age 
SM12 Annual sample size ∼100, low level of cluster sampling (0.0625% of annual effort sampled and 20% of the catch at age sampled 

from each sampled unit of effort) 
SM13 Annual sample size ∼100, high level of cluster sampling (0.015625% of annual effort sampled and 80% of the catch at age 

sampled from each sampled unit of effort) 
SM21 Annual sample size ∼1000, randomly sampled from catch at age 
SM22 Annual sample size ∼1000, low level of cluster sampling (0.5% of annual effort sampled and 20% of the catch at age sampled 

from each sampled unit of effort) 
SM23 Annual sample size ∼1000, high level of cluster sampling (0.125% of annual effort sampled and 80% of the catch at age 

sampled from each sampled unit of effort) 
SM31 Annual sample size ∼10000, randomly sampled from catch at age 
SM32 Annual sample size ∼10000, low level of cluster sampling (5% of annual effort sampled and 20% of the catch at age sampled 

from each sampled unit of effort) 
SM33 Annual sample size ∼10000, high level of cluster sampling (1.25% of annual effort sampled and 80% of the catch at age 

sampled from each sampled unit of effort) 
Estimation models 
EM1111 Constant selectivity, constant q , constant M a , Dirichlet-multinomial 
EM1112 Constant selectivity, constant q , constant M a , logistic-normal 
EM2111 White noise selectivity deviations, constant q , constant M a , Dirichlet-multinomial 
EM2112 White noise selectivity deviations, constant q , constant M a , logistic-normal 
EM4111 2D AR(1) selectivity deviations, constant q , constant M a , Dirichlet-multinomial 
EM4112 2D AR(1) selectivity deviations, constant q , constant M a , logistic-normal 
EM1211 Constant selectivity, white noise q deviations, constant M a , Dirichlet-multinomial 
EM1212 Constant selectivity, white noise q deviations, constant M a , logistic-normal 
EM1311 Constant selectivity, random walk q deviations, constant M a , Dirichlet-multinomial 
EM1312 Constant selectivity, random walk q deviations, constant M a , logistic-normal 

EM1131 Constant selectivity, constant q , random walk ˆ ˆ M deviations, Dirichlet-multinomial 

EM1132 Constant selectivity, constant q , random walk ˆ ˆ M deviations, logistic-normal 
EM1141 Constant selectivity, constant q , 2D AR(1) M a deviations, Dirichlet-multinomial 
EM1142 Constant selectivity, constant q , 2D AR(1) M a deviations, logistic-normal 

The first digit of the operating model notation describes the combination of whether selectivity and/or catchability were time-varying or not. The first digit of 
the sampling model notation describes the sample size of composition data and the second digit describes the degree of clustering. For the cluster treatments, 
the percentage of the total effort sampled and the percentage of the catch-at-age from each individual unit of effort sampled is presented in parentheses. The 
first digit of the estimation model notation describes the treatment for selectivity in the EM; the second digit describes the treatment for catchability; the third 
describes the natural mortality treatment; and the fourth describes the composition likelihood. 
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s the true catch in weight (aggregated across space) and a CV
f 5%. Variation was included in the observed fishery index
ime series by drawing from a normal distribution using the
ndex time series described above as the mean with a CV of
5%. The process that generated the composition and index
f abundance from the survey was largely independent of spa-
ial structure, included a constant asymptotic selectivity, and
s described in further detail within Appendix A . 

ampling model treatments 

he SM included two treatments related to sampling the age
omposition of the catch: the annual sample size of the com-
osition data and the degree of clustering in the composition
ata ( Table 1 ). The two SM treatments (sample size and clus-
ering) were created by varying the percentage of the annual
otal effort sampled and the percentage of the catch-at-age
ampled per unit of effort sampled. More detail on this pro-
ess is given in Appendix A and the specific percentages for
ach sampling model treatment are presented in Table 1 . Each
reatment included three levels. For the degree of clustering
n composition sampling, levels varied from no clustering to
ow and high degrees of clustering ( Figure 2 ). The “no cluster-
ng” level for each sample size treatment level was simulated
y randomly sampling from the annual catch-at-age using the
ultinomial distribution with the annual sample size equal to

hat from the low clustering level. For the sample size treat-
ent, levels varied from ∼100 to 1000 to 10000 annual fish

ged for most of the time series to make up fishery composi-
ions ( Figure 2 ). These levels were chosen to cover a range of
rders of magnitude. At the largest level of clustering, the ef-
ective sample size equaled ∼20% of the true sample size using
he Francis (2011)-TA1.8 algorithm (Fisch et al., 2021 ). Thus,
he high clustering treatment still contained a greater infor-
ation content than the previous sample size level with “no

lustering”. In total the sampling model yielded nine unique
reatments and levels ( Table 1 ). One hundred simulation repli-
ates of each OM–SM combination were run and fit by each
stimation model described in the following section. Zeroes
ere suppressed in the age composition data by adding a small

onstant (1E-5) and renormalizing the vector to sum to one. 

stimation models 

e begin by describing the baseline estimation model with
rocess variation only included in recruitment, followed by a
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Figure 1. Depiction of OM treatments. The top row depicts the realized selectivity, columns one and two showing results from an OM with a random 

effort distribution where the contact selectivity is changed to a dome shape. The top row of columns three and four depicts the realized selectivity from 

an OM with a gravity model effort distribution. These plots represent a single simulation iteration. Lighter blue signifies years at the beginning of the 
time series, which become darker in later years. The bottom row shows the catchability for each OM treatment [normalized to the mean of each time 
series { q y -mean( q y )}/mean( q y )]. Depicted in red are results from OMs with no stochasticity in fish mo v ement and fisher eff ort distribution in each y ear, to 
illustrate the distinction between process variation and directional time variation. For the purposes of visualization, the selectivity results from an OM 

with no stochasticity in fish mo v ement and fisher effort distribution are not depicted for OMs 3–4 (top right two panels). 
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full description of the implementation of the process variation 

treatments. 
The estimation models are age-structured assessments that 

run for 40 years (fishing time series from OM) modelling ages 
0–20 + . The models are fit to five sources of data: (1) the fish- 
ery catch, (2) a fishery index of abundance, (3) a fishery catch 

age composition, (4) a survey index of abundance, and (5) a 
survey age composition. The models begin the time series at 
an unfished state (through an estimated unfished recruitment 
parameter and known natural mortality at age). Recruitment 
is estimated each year using the Beverton–Holt stock recruit- 
ment function, with steepness fixed at 0.99 (consistent with 

OM) and annual lognormal recruitment deviations about the 
median value estimated as random effects on the log scale with 

the variance in recruitment estimated. Recruitment deviations 
are also estimated for cohorts that make up the initial abun- 
dance at age. 

The functional form of fishery selectivity is estimated using 
an age-based six-parameter double-normal function [Methot 
and Wetzel, 2013 —Supplementary Material Equations (A1. 
30 –1.34) ]. Fishing mortality for each age in each year is cal- 
culated as the product of fishery selectivity and a fully selected 

fishing mortality parameter estimated for each year. 
Symbology is described in Table 2 and the observation 

model is presented in Table 3 . The predicted fishery index 

is calculated by multiplying a fishery catchability parame- 
ter, which is estimated, by the exploitable biomass over the 
year [Equation (2.4)]. Fishery catchability is solely used in 

the observation model and not for the calculation of fishing 
mortality (the estimation models are not given an effort time 
series). 
ikelihoods 

he fishery catch, index, and survey index were fit with nor-
al likelihoods using CVs on their original scale (i.e. not log-

ransformed; Table 2 ). The CVs for the fishery catch and in-
ex were fixed at their correct values from the OM, while
he survey index CV was estimated. The composition data 
or both the fishery and the survey were either modelled with
 Dirichlet-multinomial likelihood or a logistic-normal likeli- 
ood, presented in detail in the EM treatments section. 

stimation model treatments 

electivity 

wo additional treatments beyond the time-invariant func- 
ional form of selectivity were considered. First, we imple- 
ented white-noise iid lognormal deviations about the func- 

ional form of selectivity for each age and year. 

s a,y = s a × e ( εs a,y ) , εs a,y ∼ N 

(
0 , σ 2 

s 

)
, 

here s a denotes the estimated values from the double-normal 
electivity function, εs a,y denotes the estimated age and year- 
pecific fishery selectivity deviation, and σ 2 

s denotes the esti- 
ated process variance for the fishery selectivity deviations.
s a simplifying assumption to reduce computation time, we 
nly estimate selectivity deviations for ages 2–10 and as- 
ume that ε s a,y = ε s 2 ,y for a < 2 and ε s a,y = ε s 10 ,y for a >
0 , similar to Xu et al. (2019) . 
For the second treatment, we implemented a 2-dimensional 

2D) AR(1) selectivity formulation developed in Xu et al.
2019) where εs a,y are correlated by age ( a ) and year ( y ) ac-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Figure 2. Sampling model treatments, including the sample size and the degrees of overdispersion. The left column depicts annual sample sizes for the 
three le v els of sample siz e and tw o le v els of clustering (lo w and high). T he right column depicts the degrees of o v erdispersion as the observ ed standard 
de viation f or each age bin across bootstrapped sampling replicates, divided b y the e xpected standard de viation, both regarding y ear 20 in the time 
series. The boxplots depict results over simulation iterations for the gravity model fishing scenario. The “no clustering” treatment had the same sample 
size as the “low clustering” treatment. 
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ording to 

ε s ∼ MV N 

(
0 , σ 2 

s R s Total 
)
, 

here R s Total represents a correlation matrix and is equal to
he Kronecker product of two separate correlation matrices,
ne for among age correlations ( R ) and another for among

ear correlations ( ̂  ˆ R ), each calculated using AR(1) processes. 

R s Total = R ⊗ ˆ ˆ R where R a,a ′ = ρ| a −a ′ | and 

ˆ ˆ R y,y ′ = 

ˆ ˆ ρ| y −y ′ | , 
here ρ and 

ˆ ˆ ρ represent estimated correlation parameters
or an AR(1) process for difference in ages ( | a − a ′ | ) and
ears ( | y − y ′ | ), respectively. Deviations were also only es-
imated for ages 2–10 ( ε s a,y = ε s 2 ,y for a < 2 and ε s a,y =
s 10 ,y for a > 10 ) as in the white noise fishery selectivity 
reatment. 

The first form of accounting for time-varying selec-
ivity was chosen based on its generality and lack of
irectional variation. The second was chosen as this
ormulation has performed well in simulation analyses
Xu et al., 2019 , 2020 ) and has been recommended
s a best practice for incorporating time-varying se-
ectivity in assessment models (Privitera-Johnson et al.,
022 ). 
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Table 2. Descriptions of parameters/symbols regarding the estimation models, and whether they were estimated or fixed. 

Symbol Description Estimated or Fixed (bounds) 

a Age subscript NA 

y Year subscript NA 

h Steepness Fixed – 0.99 
ˆ ˆ M Natural mortality scalar Fixed – 0.099 

R 0 Unfished recruitment Estimated ln scale (10, 25) 
εR y Recruitment deviations Estimated ln scale ( −10, 10) 
B 1 Double-normal selectivity parameter 1 Estimated ( −10, 20) 
B 2 Double-normal selectivity parameter 2 Estimated ( −10, 20) 
B 3 Double-normal selectivity parameter 3 Estimated ( −10, 20) 
B 4 Double-normal selectivity parameter 4 Estimated ( −10, 20) 
B 5 Double-normal selectivity parameter 5 Estimated ( −10, 20) 
B 6 Double-normal selectivity parameter 6 Estimated ( −10, 20) 
v Survey logistic selectivity slope Estimated ( −2, 5) 
u Survey logistic selectivity midpoint Estimated (0, 20) 
q Fishery catchability Estimated ln scale ( −20, 1) 
z Survey catchability Estimated ln scale ( −20, 1) 
CV H Fishery harvest CV Fixed – 0.05 
σR Recruitment deviations SD Estimated ln scale ( −10, 1) 
CV I Fishery index CV Fixed – 0.25 
CV Q 

Survey index CV Estimated ln scale ( −5, 2) 
f y Fully selected fishing mortality Estimated ln scale ( −20, 0) 
θ Weighting parameter for the DM (two parameters; one fishery, one survey) Estimated ln scale ( −10, 20) 
σAR 1 Logistic-normal AR1 SD (two parameters; one fishery, one survey) Estimated ln scale ( −5, 5) 
ϕ Logistic-normal AR1 Phi (two parameters; one fishery, one survey) Estimated logit ( −1, 1) scale ( −1e3, 1e3) 
σs SD of white noise or 2D AR(1) age- and year-correlated fishery selectivity 

deviations 
Estimated ln scale ( −10, 1) 

ρ 2D AR(1) selectivity correlation parameter for age Estimated logit (0,1) scale ( −5, 5) 
ˆ ˆ ρ 2D AR(1) selectivity correlation parameter for year Estimated logit (0,1) scale ( −5, 5) 
εs a,y Fishery selectivity deviations Estimated ln scale ( −10, 10) 
σq SD of white noise or random walk catchability Estimated ln scale ( −10, 2) 
εq a,y Fishery catchability deviations Estimated ln scale ( −10, 10) 
σM 

SD of random walk or 2D AR(1) natural mortality deviations Estimated ln scale ( −10, 1) 
εM y Natural mortality scalar deviations Estimated ln scale ( −10, 10) 
ρM 

2D AR(1) natural mortality correlation parameter for age Estimated logit (0,1) scale ( −5, 5) 
ˆ ˆ ρM 

2D AR(1) natural mortality correlation parameter for year Estimated logit (0,1) scale ( −5, 5) 
εM a,y Age- and year specific natural mortality deviations regarding the 2D AR(1) 

formulation 
Estimated ln scale ( −10, 10) 

F ec a Fecundity at age Fixed—OM values ( Supplementary Table 2 ) 
SB 0 Unfished spawning biomass Function of R 0 , M a , and F ec a 
L a Length at age Fixed—OM values ( Supplementary Table 3 ) 
W t a Weight at age Fixed—OM values ( Supplementary Table 3 ) 
N̄ a,y Mean numbers at age Function of N a,y and Z a,y [Equation (2.4)] 
H y Observed harvest Data 
I y Observed fishery index Data 
Q y Observed survey index Data 
SS y The number of fish aged in a given year Data 
P a,y Observed fishery composition Data 
G a,y Observed survey composition Data 
b Number of bins in a composition data set 21 

If estimated the bounds of estimation are identified in parentheses. Fixed parameters were assumed known at their specified values in the OM. 
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Fishery catchability 

We considered two additional fishery catchability treatments 
in addition to a constant fishery catchability. The first esti- 
mated annual lognormal white noise iid deviations about the 
mean fishery catchability (an estimated parameter). 

q y = q × e ( εq y ) , εq y ∼ N 

(
0 , σ 2 

q 

)
, 

where εq y denotes the fishery catchability deviation for a given 

year and σ 2 
q denotes the process variance of the fishery catch- 

ability deviations. The second treatment modelled q as a ran- 
dom walk. 

q y +1 = q y × e ( εq y ) , εq y ∼ N 

(
0 , σ 2 

q 

)
, 
here the initial year fishery catchability value is 
stimated. 

The two forms of accounting for time-varying fishery catch- 
bility were chosen again because of their generality (white 
oise deviations), and the random-walk formulation has per- 
ormed well in simulation studies compared to a suite of
ther methods (Labelle, 2005 ; Wilberg and Bence, 2006 ),
eading to a recommendation as a default approach in the
bsence of prior information (Wilberg et al., 2009 ). Note
hat time-varying fishery catchability is applied only to the 
ndex of abundance from the fishery. The survey catchabil- 
ty was assumed constant in all models ( z in Tables 2 

nd 3 ). 

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Table 3. Estimation model equations. 

Quantity Equation 

Process model 

1.1 Abundance at age N a,y = 

⎧ ⎨ 

⎩ 

R y i f a = 0 
N a −1 ,y −1 e −( F a −1 ,y −1 + M a −1 ) i f 1 ≤ a < 20+ 

N a −1 ,y −1 e −( F a −1 ,y −1 + M a −1 ) + N a,y −1 e −( F a,y −1 + M a ) i f a = 20+ 

1.2 Recruitment R y = 

4 hR 0 SB y 
SB 0 ( 1 −h )+ SB y ( 5 h −1 ) e 

ε y ε y ∼ N( 0 , σ 2 
R ) 

1.3 Spawning biomass SB y = 

∑ 

a 
N a,y F ec a 

1.4 Natural mortality M a = 

ˆ ˆ M 

L 7 
L a 

1.5 Fishery selectivity (double-normal) s a,y —see Appendix B 

1.6 Fishing mortality F a,y = s a,y f y 

Observation model 
2.1 Predicted catch-at-age ˆ C a,y = 

F a,y 

F a,y + M a 
N a,y [ 1 − e −( F a,y + M a ) ] 

2.2 Predicted fishery harvest ˆ H y = 

∑ 

a 

ˆ C a,y W t a 

2.3 Predicted fishery composition ˆ P a,y = 

ˆ C a,y ∑ 

a 

ˆ C a,y 

2.4 Predicted fishery index ˆ I y = q 
∑ 

a 
N̄ a,y W t a s a where N̄ a,y = 

N a,y [ 1 −e ( −Z a,y ) ] 
Z a,y 

2.5 Survey selectivity g a = 

1 
( 1+ e ( −v ( a −u ) ) ) 

2.6 Predicted survey index ˆ Q y = z 
∑ 

a 
g a N a,y 

2.7 Predicted survey composition ˆ G a,y = 

g a N a,y ∑ 

a 
g a N a,y 

Negative log likelihoods 

3.1 Fishery harvest 
∑ 

y 
ln ( CV H × ˆ H y ) + 0 . 5 

(
H y − ˆ H y 

CV H × ˆ H y 

)2 

3.2 Fishery CPUE 

∑ 

y 
ln ( CV I × ˆ I y ) + 0 . 5 

(
I y − ˆ I y 

CV I × ˆ I y 

)2 

3.3 Fishery-independent survey CPUE 

∑ 

y 
ln ( CV Q 

× ˆ Q y ) + 0 . 5 
(

Q y − ˆ Q y 

CV Q × ˆ Q y 

)2 

3.4 Recruitment deviations 
∑ 

y 
ln ( σR ) + 0 . 5 

(
εR y 
σR 

)2 

3.5 Process variations—normal distribution 
∑ 

y 
ln ( σ j ) + 0 . 5 

(
ε j y 
σ j 

)2 
, 

where j denotes a process variation treatment 
3.6 Process variations—multivariate normal 

[2D AR(1) selectivity or natural 
mortality deviations] 

0 . 5 
[
ln ( | �s | ) + ε s ′ �−1 

s ε s 
]

where �s = σ 2 
s R s Total 

0 . 5 
[
ln ( | �M 

| ) + ε M 

′ �−1 
M 

ε M 

]
where �M 

= σ 2 
M 

R M Total 

3.7 Dirichlet-multinomial (DML) 1 −∑ 

y 

⎡ 

⎣ 

log ( �( SS y + 1 ) ) − ∑ 

a 
( log ( �( SS y P a,y + 1 ) ) ) + log ( �( SS y θ ) ) 

− log ( �( SS y + SS y θ ) ) + 

∑ 

a 
( log ( �( SS y P a,y + SS y θ ˆ P a,y ) ) − log ( �( SS y θ ˆ P a,y ) ) ) 

⎤ 

⎦ 

3.8 Logistic-normal (LN) 1 , 2 
∑ 

y 

⎡ 

⎣ 

0 . 5( b − 1 ) log ( 2 π ) + 

∑ 

a 
[ log ( P a,y ) ] + 0 . 5 log ( | V y | ) 

+( b − 1 ) log ( W y ) + 

( x T y V 
−1 
y x y ) 

2 W 

2 
y 

⎤ 

⎦ 

1 Note that composition likelihoods are also used for the survey compositions, thus ˆ G a,y and G a,y can be substituted for ˆ P a,y and P a,y . 
2 Additional details regarding the formula for the negative log-likelihood of the logistic-normal can be found in Appendix C.
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atural mortality 

e chose to include process variation in natural mortality
ithin the estimation models to provide additional insight on

he consequences of specifying variation on the incorrect pro-
ess. We incorporated two formulations of process variance
n natural mortality. The first was a random walk parameter-
zation of annual deviations on the scalar parameter of natural

ortality ( ˆ ˆ M ), similar to that used for catchability (where the

nitial year ˆ ˆ M 1 = 

ˆ ˆ M ). 

ˆ ˆ M y +1 = 

ˆ ˆ M y × e ( εM y ) , εM y ∼ N 

(
0 , σ 2 

M 

)
. 

The second was a 2D AR(1) formulation of age- and year-
pecific deviations on natural mortality at age similar to that
odelled on fishery selectivity. 

M a,y = M a × e ( εM a,y ) , ε M 

∼ MV N 

(
0 , σ 2 

M 

R M Total 
)
, 

here R M Total is again the Kronecker product of individ-
al correlation matrices for age and year. We again chose
o only model deviations for ages 2–10 as in the fishery se-
ectivity formulation and thus ε M a,y = ε M 2 ,y for a < 2 and
 M a,y = ε M 10 ,y for a > 10 . 

Note that the scalar parameter ( ˆ ˆ M ) in each natural mortal-
ty formulation was not estimated and was fixed at its OM
alue. Thus, for unfished calculations within the estimation
odel, the correct natural mortality ogive was used. 
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Composition likelihoods 

Two levels of composition likelihood were tested: the 
Dirichlet-multinomial and the logistic-normal. We utilized the 
linear parameterization of the Dirichlet-multinomial (Thor- 
son et al., 2017 ), and the first-order autoregressive param- 
eterization of the additive logistic-normal (Aitchison, 2003 ; 
Francis, 2014 ). We abbreviate the linear formulation of the 
Dirichlet-multinomial hereafter in the text using “DM”. This 
formulation of the likelihood results in an effective sample size 
for composition data that scales linearly with the true sample 
size and estimates a single additional parameter per compo- 
sition dataset meant to increase the expected variation about 
residuals (above that implied by the sample size alone) to ac- 
count for overdispersion. The true number of age samples was 
used for SS y in the Dirichlet-multinomial likelihood [ Table 3 ,
Equation (3.7)]. 

We abbreviate the first-order autoregressive parameteriza- 
tion of the logistic-normal hereafter in the text using “LN”. A 

composition conforms to a logistic-normal distribution with 

parameters [ P , C ] when P a = 

e T a ∑ 

a 
e T a . In this case, T conforms 

to a multivariate normal distribution with mean log ( P ) and 

covariance matrix C . For this reason, the logistic-normal can- 
not accommodate zeroes in composition data. However, the 
logistic-normal is theoretically able to account for correla- 
tions in residuals between bins by virtue of the variance–
covariance matrix regarding the multivariate normal distribu- 
tion. The formulation tested in this study implements a first- 
order autoregressive [AR(1)] parametrization of the variance–
covariance matrix. This parameterization necessitates two pa- 
rameters per composition data source: σLN 

and ϕ. Differen- 
tial weighting between years based on composition sample 

size was achieved W y = 

√ 

S̄ ̄S / SS y , where S̄ ̄S denotes the mean 

sample size over the time series and σLN,y = σLN 

× W y , as in 

Francis (2014) . The variance–covariance matrix in each year,
 y , was calculated according to C y,a,a ′ = σ 2 

LN,y ρLN | a −a ′ | , where 
ρLN | a −a ′ | = ϕ 

| a −a ′ | for an AR(1) process. 
Note that each likelihood assumes overdispersion is con- 

stant across ages, whereas the sampling model clustering in 

composition data simulates overdispersion that does vary be- 
tween ages ( Figure 2 ). 

Model running 

A full factorial of OM–SM treatments resulted in 36 com- 
binations (data files) with 100 simulation replicates of each,
to be fit by 14 unique EMs ( Table 1 ). We did not imple- 
ment a full factorial cross of EM process variation treatments 
due to time and computational constraints. Each model was 
fit in TMB with estimated parameters and bounds identified 

in Table 2 . TMB first calculates the marginal negative log- 
likelihood given the fixed effect parameters using the Laplace 
approximation to integrate over random effects. Fixed effect 
parameters are then estimated via minimizing the marginal 
negative log-likelihood within the programme R using the 
nlminb function. Random effects and derived quantities are 
then predicted using empirical Bayes (Kristensen et al., 2016 ).
All deviations from process variation treatments, in addition 

to those from recruitment variation were treated as random ef- 
fects. Variance parameters for process variations and compo- 
sition likelihoods were estimated for all treatments. The two 

correlation parameters associated with each 2D AR(1) param- 
terization were constrained between 0 and 1 using a logit
ransformation. This constraint was implemented similar to 

u et al. (2019) largely based in biological plausibility, that
e would expect selectivity and natural mortality deviations 

o be positively correlated with age and year (H. Xu, pers.
omm), as fish of similar ages tend to behave similarly, fishing
ractices are likely to gradually evolve over time, and envi-
onmental or ecosystem conditions affecting natural mortality 
re highly likely to be autocorrelated. We decided not to im-
lement restricted maximum likelihood estimation (REML) 
o correct for negative biases when estimating variances us- 
ng maximum likelihood (Cheang and Reinsel, 2000 ; Miller
t al., 2018 ; Thorson, 2019 ) as an iterative approach accom-
anies this method (Xu et al., 2019 ) and our goal was not
o fix variances (and ideally to move away from iterative ap-
roaches). Thus, there is likely to be a small negative bias in
ur variance estimates. We do implement the epsilon bias cor-
ection method of Thorson and Kristensen (2016) for point 
stimates of derived quantities resulting from each model. We 
ssessed convergence based on whether the hessian matrix for 
 given model run was positive-definite. If a model did not
onverge, initial parameter values were jittered, and the esti- 
ation model was fit again. This process was repeated a max-

mum of five times, after which a model was considered not
onverged. For models that converged for < 25% of the sim-
lation iterations, we do not present results other than noting
onvergence. 

erformance metrics 

e focused on the ability of the estimation models to esti-
ate depletion (SB 41 /SB 0 ) and spawning stock biomass in the

erminal year of each EM by assessing the relative error over
imulations [Relative error = (Estimated-T rue)/T rue]. We also
xamined the confidence interval coverage of point estimates 
or each using 95% Wald confidence intervals calculated with 

tandard errors obtained from the generalized delta method in 

MB. Coverage was assessed as the percentage of iterations 
rom converged models where the true value was within the
stimated interval. 

uestions addressed by case comparisons 

n the interest of brevity, we focus our synthesis of the results
n a few key comparisons across treatments. 

hat is the impact of the composition likelihood 

hosen? 

ere we examine all cases of OM-SM-EM combinations,
omparing the performance of the DM to the LN. This in-
luded situations where the estimation models only consid- 
red variation in recruitment (the baseline EM). We pay par-
icular attention to the impact of fishery composition sample 
izes, degrees of clustering in fishery composition data, and 

otential differences in parameter confounding between the 
ikelihoods. 

ow do the general methods for process variation 

erform? 

ere we compare the methods implemented that attempt to 

ccount for process variation and pay particular attention to 

ases where processes from the OM were directionally time- 
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arying and the EMs attempted to account for it by specifying
ariation on the correct process. 

re process and sampling error variances 

dentifiable and estimable? 

ere we examine the estimation of the process variance terms
or all model formulations but pay particular attention to
ases where the true process was variable, and the correct esti-
ation process was specified as variable. We examine whether

he sampling variance and the process variation were con-
ounded. We also note the number of converged models. 

hat if we model variation on the wrong process? 

ere we examine situations where there was time-variation
n a process within the OM; however, a different process in-
luded the variation within the EM, including the EMs with
ariation specified on natural mortality. 

hat if we model variation and there is none? 

ere we pay attention to cases where variation in the OM
as minimal in selectivity and catchability (OM1); however,

he estimation models attempted to estimate variation in each.
ere they successful in minimal estimates of the process vari-

nces? We also pay particular attention to the estimation mod-
ls which considered variation in natural mortality as there
as no variation specified for this in the OM. 

ensitivity analyses 

e evaluated some additional models as sensitivities. These
ncluded baseline estimation models utilizing the multivari-
te Tweedie likelihood (Thorson et al., 2022 ) for fitting the
omposition data and baseline estimation models fit to OM–
M combinations where the time series of data was extended
rom 40 to 80 years. The multivariate Tweedie likelihood used
as as formulated in Thorson et al. (2022) . We also ran sen-

itivity EMs that estimated both 2D AR(1) selectivity devi-
tions and process variation in natural mortality [using ei-
her the random walk or 2D AR(1) formulation]. These mod-
ls were only run for OMs 3–4 at the largest sample sizes
o evaluate whether time-varying selectivity could be teased
part from time-varying natural mortality. We also ran EMs
sing the logistic-normal for fitting composition data how-
ver without relative weighting between years based on the
omposition sample size ( W y = 1 ) . Finally, we ran EMs with
D AR(1) process variance on either selectivity or natural
ortality where we allowed the correlation parameters of the
D AR(1) to be bounded between −1 and 1 (as opposed to
–1). Results for the sensitivity models can be found in the
upplemental material (Supplementary Figures 3 –33) and are
riefly presented and discussed in the results and discussion. 

esults 

n what follows, we describe general results and patterns from
ach estimation model treatment regarding the prompts listed
bove. In general, EMs most often exhibited a negative bias
n depletion and spawning stock biomass in the terminal year,
nd very few treatments exhibited a positive bias in confidence
nterval coverage. 
hat was the impact of the composition likelihood 

hosen? 

he likelihood chosen for composition data was consequen-
ial, and the only situations in which the LN outperformed the
M were at the largest sample sizes, and for only a subset of
etrics and OM treatments ( Figures 3 –6 ). Consequently, we

ocus most of our synthesis of results on the EMs that fit com-
osition data with the DM. When we do reference results of
Ms fit with the LN, we mostly focus on the largest sample
ize level. 

There were, however, a few notable differences between
he two likelihoods for different OM-SM-EM treatments. The
N tended to improve in performance as the sample size in-
reased across all EM–OM combinations, where the DM per-
ormance tended to worsen specifically for OMs 3–4 [a no-
able exception being the 2D AR(1) selectivity EM, which im-
roved as sample size increased]. When fishery selectivity di-
ectionally varied in the OM (OMs 3–4) and was unaccounted
or in the EM, the LN outperformed the DM in most met-
ics at the largest sample size level. Conversely, when the pro-
ess variation was modelled on selectivity in the EM and it
irectionally varied in the OM, the DM outperformed the
N. Lastly, when process variation was placed on natural
ortality in the EM and the OM exhibited directional vari-

tion in selectivity (OMs 3–4), the LN was more robust to
his misspecification than the DM at the largest sample size 
evel. 

In addition, overall, the degree of clustering in composi-
ion data did not seem to greatly affect results regarding bias,
lthough generally, more clustering led to increased negative
ias in confidence interval coverage for the DM models. 

ow do the methods for modelling process 

ariation perform? 

or the OM treatment that included directionally time-
arying catchability and constant selectivity (OM2), the ran-
om walk parameterization of catchability variation had the
est performance, estimating the least amount of bias for ter-
inal year estimates and some of the least negatively biased

onfidence interval coverage ( Figures 3 –6 ). The white noise
arameterization of catchability process variance improved
erformance compared to the baseline; however, it was more
iased than that which modelled catchability with a random
alk. 
For the OM treatment that included directionally time-

arying selectivity and a constant catchability (OM3), the
M with 2D AR(1) selectivity deviations was least biased

n terminal year estimates and confidence interval coverage
hen the sample size was greater than the lowest level. At

he lowest sample size level, all EMs had similar levels of 
ias. 
When the OM included both directionally time-varying se-

ectivity and catchability (OM4), the EM with random walk
atchability was the least biased in terminal year estimates
nd confidence interval coverage for all but the largest sample
izes. At the largest sample size level, the EM with 2D AR(1)
electivity deviations was least biased in terminal year esti-
ates and confidence interval coverage. 
Each of the above points is true for the DM models. For

N models, the points made at the largest sample size level
emain true with the exception that the random walk catcha-
ility outperformed the 2D AR(1) selectivity for OM4. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Figure 3. R elativ e error of terminal-y ear estimates of depletion from the estimation models. T he columns depict different EM process v ariance 
treatments where the rows depict different OM treatments. Shown in blue are the results from the DM and in tan those from the LN. The x -axis is 
presented as three groups of increasing sample size, within which are the three levels of increasing clustering. The violin plots depict an approximation 
of the density of the distributions across simulations, and the point denotes the median. 
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Were multiple process and sampling error 
variances identifiable and estimable? 

For the most part, the process variance terms were estimable,
although it was dependent on the process variation modelled,
the sample size of the composition data, and the choice of 
likelihood for fishery composition data. Recruitment variation 

was estimated well in nearly all cases for the DM models. The 
exceptions to this were when process variation was also mod- 
elled on M . EMs with random walk M at the largest sample 
sizes overestimated recruitment variation for OMs 3–4, and 

EMs with a 2D AR(1) parameterization of M variation had 

highly variable and poor estimates of recruitment variation 

for fits to OMs 1–2 ( Figure 7 ). For models fit with the LN,
at small sample sizes the estimates of the standard deviation 

of recruitment were positively biased across all OM-SM-EM 

treatments. As expected, when the standard deviation of re- 
cruitment was estimated well there was a minute negative bias.

For OM treatments with directionally time-varying catch- 
ability (OM2 and OM4), estimates of the standard deviation 

of catchability for the EMs with either white-noise catchabil- 
ity or random walk catchability were consistent across sample 
sizes and greater than zero for models fit with the DM ( Figure 
8 ). For EMs fit with the LN, the estimates were similar to the 
DM; however, only at sample sizes above the lowest level. 

For OM treatments with directionally time-varying selec- 
tivity (OMs 3–4) fit with the DM, estimates of the standard 

deviation parameter for the white noise selectivity EM treat- 
ent were not identified well at small sample sizes; however,
recision across simulations improved as the sample size of 
he composition data increased. The estimates also increased 

s sample clustering in composition data increased (and more 
ronounced for small and moderate sample sizes than at 
arge). At the small sample size level, the estimates tended
o zero (exception being the high clustering level), where at
oderate and large sample sizes the estimates were consis- 

ently greater than zero ( Figure 8 ). The similarly parameter-
zed LN models only estimated the standard deviation param- 
ter greater than zero at the largest sample sizes, and the es-
imates were similar across levels of clustering. For the EMs
arameterized with 2D AR(1) selectivity deviations fit with 

he DM, the SD estimates for the fishery selectivity deviations
ere greater than zero and generally larger for greater levels of

lustering when fit to OMs 3–4. The precision of the estimates
cross simulations again improved with sample size. For EMs
t with the LN, this parameter was greater than zero again
nly at the largest sample size levels. Estimates of the corre-
ation parameters in the 2D AR(1) selectivity were more vari-
ble, and for the DM EMs, the age correlation parameter was
ot identified well at smaller sample sizes and approached one
s the sample size increased to the highest level. The year cor-
elation parameter estimates tended to decrease as the level of
lustering increased and for small and moderate sample sizes 
ere not identified very well (variable across simulations). At 

he largest sample sizes, this parameter was estimated near one
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Figure 4. R elativ e error of terminal-y ear estimates of spa wning stock biomass from the estimation models. T he columns depict different EM process 
variance treatments where the rows depict different OM treatments. Shown in blue are the results from the DM and in tan those from the LN. The 
x -axis is presented as three groups of increasing sample size, within which are the three levels of increasing clustering. The violin plots depict an 
approximation of the density of the distributions across simulations, and the point denotes the median. 
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ndicating the model is estimating a large degree of correlation
n selectivity over years (coupled with SD estimates greater
han zero suggests the model is accounting for time-variation
n selectivity). For the LN, the year correlation parameter ap-
roached one at all sample sizes; however, the age correlation
arameter approached one only for the largest sample sizes.
he number of converged models for the 2D AR(1) selectiv-

ty parameterization was generally the lowest across all treat-
ents and was only at levels comparable to the other EMs

t the largest sample sizes, for both EMs fit with the DM
nd LN ( Figure 9 ). Notably for models fit with the DM, the
umber of converged models for the 2D AR(1) selectivity pa-
ameterization increased as clustering in composition data in-
reased for all OMs and increased as the sample size increased
pecific to OMs with directionally time-varying selectivity
OMs 3–4). 

The sampling variance parameters for each likelihood were
stimable (for converged models), although estimates differed
epending on the EM process variation treatment, the sam-
le size of the composition data, and the degree of cluster-
ng in composition data. For example, in the baseline EM,
stimates of the fishery composition overdispersion param-
ter for the DM likelihood decreased (i.e. estimating more
verdispersion) as the degree of clustering increased and
lso as the sample size of compositions increased, particu-
arly for fits to OMs with directional variation in selectiv-
ty ( Supplementary Figure 1 ). Similarly, the estimated corre-
ation parameter for the AR(1) parameterization of the LN
ikelihood increased as the degree of clustering in composi-
ion data increased and as sample size increased to its highest
evel when there was directionally time-varying selectivity in
he OM (OMs 3–4). Conversely, for EMs with 2D AR(1) se-
ectivity deviations, estimates of the overdispersion parameter
or fishery composition data were now much more consistent
cross sample sizes for OMs 3–4 and the correlation parame-
er for LN AR(1) did not increase as the sample size increased
or OMs 3–4 (although both still included clustering effects,
upplementary Figure 2 ). This suggests in the former case that
he sampling variance parameters are accounting for process
ariation in selectivity. 

hat if we model variation on the wrong process? 

hen there was minimal variation in catchability and direc-
ional time-variation in selectivity in the OM (OM3), there
as little downside to specifying catchability as a random
alk process in the EM ( Figures 3 –4 ). In some cases, nega-

ive bias in confidence interval coverage decreased compared
o the baseline EM, which did not include process variation
utside of recruitment variation. The same can be said for the
hite noise catchability deviations. 
When there was minimal variation in fishery selectivity and

irectional time-variation in fishery catchability in the OM
OM2), modelling variation in fishery selectivity using either
he white noise deviations or the 2D AR(1) parameterization
ed to roughly equivalent bias compared to modelling no vari-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Figure 5. Confidence interval coverage for terminal-year estimates of depletion. The dotted line depicts the 95% line. Perfect coverage would equal 
95%. The columns depict different EM process variance treatments where the rows depict different OM treatments. Shown in blue are the results from 

the DM and in tan those from the LN. The x -axis is presented as three groups of increasing sample size, within which are the three levels of increasing 
clustering. The violin plots depict an approximation of the density of the distributions across simulations, and the point denotes the median. 
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ation in fishery catchability and selectivity (although exhibited 

more bias than either EM which allowed fishery catchability 
to vary), conditional on using the DM. For EMs fit with the 
LN at large sample sizes, specifying variation on fishery se- 
lectivity led to no more bias than the baseline models and a 
minor decrease in the negative bias exhibited by confidence 
interval coverage. 

When process variation was modelled on natural mortality 
in estimation models fit to OMs 2–4, depletion estimates were 
generally more biased than specifying variability on the cor- 
rect process, and typically more so for larger sample sizes. For 
EMs with a random walk M fit to OMs 3–4, the bias at the 
largest sample sizes was substantially greater than that of all 
other EMs, and much greater for the DM models compared 

to the LN in these cases. The confidence interval coverage for 
depletion in these cases was also more severely negatively bi- 
ased for the DM (for SSB, the DM overestimates coverage).
The standard deviation for the random walk parameteriza- 
tion of natural mortality was effectively zero for all but the 
largest sample sizes for EMs fit to OMs 3–4 (although many 
estimates were greater than zero at moderate sample sizes for 
the DM). At the large sample size level for EMs fit to OMs 3–
4, the median (across simulations) estimate of SD for the ran- 
dom walk parameterization of natural mortality was ∼0.12 

for the DM and ∼0.05 for the LN ( Figure 8 ). For the 2D AR(1) 
parameterization of deviations on natural mortality, the bias 
for depletion was also greater than other EMs and notably 
increased with sample size for fits to OMs 1–2; however, re- 
ained consistent across sample sizes for OMs 3–4. The in-
rease in bias with sample size was not as severe for estimates
f terminal spawning stock biomass and at small sample sizes
his metric was unbiased for the DM (although the precision
f estimates was much greater than the baseline EMs). The
ias for models fit with the LN at the largest sample sizes was
oughly equivalent to that from the DM; however, confidence 
nterval coverage was generally less negatively biased for the 
N. The SD parameter for the 2D AR(1) formulation on nat-
ral mortality was consistently estimated greater than zero,
he exception being at the largest sample sizes of OMs 1–2
notably where selectivity did not vary in the OM). The corre-
ation parameters for the 2D formulation on natural mortality 
ere highly variable and generally the age correlation term in-

reased with increased clustering and sample size, where the 
ear correlation term approached one across sample sizes and 

lustering for OMs 3–4 (indicating natural mortality is esti- 
ated as highly correlated by year) and was not identified well
ut approached zero for OMs 1–2. 

hat if we model variation and there is none? 

hen there was minimal variation in catchability and selec- 
ivity in the OM (OM1), with exception to the 2D AR(1) nat-
ral mortality EMs, specifying any of the other EM variation
reatments led to similar bias levels compared the baseline EM
ith no process variation modelled ( Figure 3 ). This was true

or all DM models and only LN models at the largest sam-
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Figure 6. Confidence interval coverage for terminal-year estimates of spawning stock biomass. The dotted line depicts the 95% line. Perfect coverage 
w ould equal 95%. T he columns depict different EM process variance treatments where the rows depict different OM treatments. Shown in blue are the 
results from the DM and in tan those from the LN. The x -axis is presented as three groups of increasing sample size, within which are the three levels of 
increasing clustering. The violin plots depict an approximation of the density of the distributions across simulations, and the point denotes the median. 
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le size level. In these cases, negative biases in confidence in-
erval coverage did increase for many EMs compared to the
aseline, although this effect was small (1–5%, Figures 5 –
 ). EMs with 2D AR(1) deviations on natural mortality per-
ormed considerably worse than the baseline (and all other
Ms) in terms of bias in estimates and confidence interval
overage of depletion, and this bias increased as sample size
ncreased. The levels of bias for spawning stock biomass
stimates and confidence interval coverage were not as 
evere. 

The median estimated variance parameters for the process
ariation treatments on catchability and random walk natu-
al mortality were approximately zero when using the DM
or fits to OM1 ( Figure 8 ). For catchability, this was only true
or the LN models at the largest sample size level. The pro-
ess variation parameters for selectivity variation treatments
ere approximately zero across sample sizes when there was
o clustering in composition data for the DM. As clustering
ncreased the standard deviation estimates for either selectiv-
ty parameterization did as well. At the largest sample size
evel, the LN estimated these terms at zero across clustering
evels. For the 2D AR(1) parameterization of variation on nat-
ral mortality, estimates of the standard deviation parameter
here consistently greater than zero across clustering treat-
ents for small sample sizes and approached zero as the sam-
le size increased. Estimates of the age correlation parame-
er for the 2D AR(1) parameterization of variation on natu-
 t  
al mortality increased both as clustering and as sample size
ncreased, where estimates of the year correlation parameter
ere highly imprecise across simulations, although the mode
f the distribution decreased as sample size increased. At the
argest sample sizes for the LN, the standard deviation param-
ter for the 2D AR(1) parameterization of variation on natural
ortality approached zero. 

ensitivity models 

esults of the EMs fit with the multivariate Tweedie likelihood
ere very similar to those of the DM EMs ( Supplementary
igures 3 –5 ). No notable improvements or deteriorations in
odel performance appear evident across OM–SM treat-
ents. For EMs fit to an 80-year time series of data, pat-

erns in results of baseline EMs were largely similar to the
0-year time series, although at the largest sample size lev-
ls the LN now consistently exhibited less bias in deple-
ion and spawning stock biomass and was less negatively bi-
sed confidence interval coverages for fits to OMs 3–4 (a
ore pronounced improvement than the baseline exhibited;

upplementary Figures 6 –8 ). 
For estimation models that specified both 2D AR(1)

ariation in selectivity and random walk variation in the

atural mortality scalar parameter ( ˆ ˆ M ) fit to the largest
ample size SMs from OM3 to OM4, little to no varia-

ion in 

ˆ ˆ M and some variation in selectivity was estimated

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Figure 7. Estimates of recruitment variation for each OM-SM-EM treatment. The columns depict different EM process variance treatments where the 
rows depict different OM treatments. Shown in blue are the results from the DM and in tan those from the LN. The x -axis is presented as three groups 
of increasing sample size, within which are the three levels of increasing clustering. The violin plots depict an approximation of the density of the 
distributions across simulations, and the point denotes the median. 
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( Supplementary Figure 9 ), leading to less bias in spawn- 
ing biomass and depletion and less negatively biased confi- 
dence interval coverage compared to the baseline estimation 

models or when simply ˆ ˆ M was modelled as a random walk 

( Supplementary Figures 11 –12 ). These bias and coverage lev- 
els were approximately equivalent to the estimation models 
that only estimated 2D AR(1) deviations in selectivity. For 
these sensitivity models, those fit with the DM exhibited less 
bias and underestimation of coverage than those fit with the 
LN. 

For estimation models that specified both 2D AR(1) varia- 
tion in selectivity and natural mortality fit to the largest sam- 
ple size SMs from OM3 to OM4, some variation in selectiv- 
ity was estimated [however, less than that from the preced- 
ing sensitivity model and the model that only included 2D 

AR(1) deviations] in addition to some variation in natural 
mortality ( Supplementary Figure 14 ). This led to increased 

bias in terminal year estimates and confidence interval cov- 
erage for depletion compared to the baseline EM; however,
less biased estimates and coverage for depletion compared to 

the EM that only estimated 2D AR(1) deviations on natu- 
ral mortality ( Supplementary Figures 16 –17 ). Estimates and 

coverage levels for spawning stock biomass were less biased 

than both the baseline EM and the EM that only estimated 

2D AR(1) deviations on natural mortality. For each of the 
sensitivity models that attempted to estimate 2D AR(1) de- 
viations in both fishery selectivity and natural mortality, those 
t with the LN generally exhibited less bias in terminal year
stimates and confidence interval coverage than those fit with 

he DM. 
The sensitivity EMs fit with the LN likelihood formulated 

ithout relative weighting between years based on annual 
omposition sample size exhibited very similar output to the 
aseline EMs using the LN as described in the methods, with
imilar bias levels in depletion and spawning stock biomass 
 Supplementary Figures 19 –20 ) and marginally more biased
onfidence interval coverage ( Supplementary Figure 21 ). The 
ensitivity EMs with 2D AR(1) process variance on either se-
ectivity or natural mortality where the correlation parameters 
f the 2D AR(1) were bounded between −1 and 1 (as op-
osed to 0–1) rarely improved upon and were often more bi-
sed with worse coverage than the original estimation models 
hat constrained the correlation terms of the 2D AR(1) from
 to 1 ( Supplementary Figures 22 –33 ). 

iscussion 

etting the process variability correct 

etting the process variability “correct”, in the sense that vari-
nce is modelled on a process that is directionally varying in
he operating model (noting we are not modelling the actual
echanism), proved in large part possible and led to improve-
ents in model performance compared to not doing so. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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Figure 8. Estimates of hyperparameters for each process variation treatment. The columns depict the different OM treatments where the rows depict 
different process variance hyperparameters for each EM treatment. The EM treatment is identified in each row title and the y -axis for each row denotes 
the specific hyperparameter. Shown in blue are the results from the DM and in tan those from the LN. The x -axis is presented as three groups of 
increasing sample size, within which are the three levels of increasing clustering. The violin plots depict an approximation of the density of the 
distributions across simulations, and the point denotes the median. 
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Accounting for white-noise variability did improve perfor-
ance compared to not accounting for variation in the process

t all; however, the formulations that allowed for directional
ariation [random walk, 2D AR(1)] performed best given the
rue variation was directional. The variance parameters in
hese processes were largely estimable along with those re-
ating to the sampling variance. The performance of the 2D
R(1) selectivity formulation greatly improved as the sam-
le size increased for fishery composition data, as it led to
oughly equivalent bias levels compared to not modelling vari-
tion in fishery selectivity at the smallest sample sizes, and
ccounting for variation in catchability proved more impor-
ant for all but the largest sample sizes in OM4 (when there
as variation in both catchability and selectivity in the op-

rating model). The hyperparameters of the 2D AR(1) selec-
ivity formulation do appear to require a large sample size
f composition data for reasonably precise estimation. The
tudy that first presented the method, Xu et al. (2019) , do
ote that the 2D AR(1) method for selectivity variation is
ore important for assessments with high-quality composi-
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Figure 9. Con v ergence, depicted as the number of iterations where an EM w as considered con v erged. T he columns depict different EM process 
variance treatments where the rows depict different OM treatments. Shown in blue are the results from the DM and in tan those from the LN. The 
x -axis is presented as three groups of increasing sample size, within which are the three levels of increasing clustering. The violin plots depict an 
approximation of the density of the distributions across simulations, and the point denotes the median. The dotted line at 25 depicts a le v el belo w which 
we do not present results of an EM as too few simulation iterations converged. 
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tion data and that the precision of parameter estimates im- 
proved when the sample size increased, similar to our results.
In fact, within Xu et al. (2020) , where both the 2D AR(1) se- 
lectivity parameterization and fitting composition data with 

the DM were implemented, although they concluded that the 
median estimates of the three hyperparameters were encour- 
agingly > 50% of their true level, the distributions for the 
parameters (particularly the correlation terms) were highly 
variable across simulations similar to the results from our 
analysis. 

Notably, the estimation models were availed of a fishery- 
independent survey for the second half of the time series that 
included constant catchability and constant, asymptotic selec- 
tivity, which may have aided in both the estimation of random 

walk fishery catchability and 2D AR(1) fishery selectivity. It is 
likely these treatments would have performed worse without a 
fishery-independent survey, as has been found in other studies 
on time-varying catchability (Wilberg and Bence, 2006 ). 

Overparameterization 

With exception to the 2D AR(1) natural mortality formu- 
lation, including process variation in the estimation model 
(other than recruitment variation) when there was no di- 
rectional time-variation in any process within the operat- 
ing model, or overparameterizing the EM, did not result in 

appreciable decreases in model performance. There did ap- 
ear to be an effect of clustering in composition data par-
icular to modelling process variability on selectivity and 

atural mortality, where estimates of the process variance 
erms increased with increased clustering in composition data 
 Figure 8 ), suggesting the process variation was beginning
o fit to noise in the composition data. For fishery selec-
ivity, however, this effect did not seem to greatly dimin-
sh our performance metrics. In these instances for the 2D
R(1) parameterization, the yearly correlation term tended 

o zero, resulting in strictly age-correlated variation in se- 
ectivity accounting for clustering in composition data. Con- 
urrently, as the variation estimated in selectivity was ac- 
ounting for increased clustering in sampling, the DM es- 
imated less overdispersion in fits to the fishery composi- 
ions (Supplementary Figures 1 –2 ). The estimation of effec-
ively zero annual correlation in selectivity variation is likely
hat led to similar bias levels, while the estimation of age-

orrelated variation in fishery selectivity likely led to simi-
ar estimates of the total variance compared to the baseline
reatments, thus not having a great effect on confidence in-
ervals relative to the baseline models [evidenced by cover- 
ge increasing with clustering for 2D AR(1) fishery selectiv- 
ty fit to OMs 1–2]. The lack of consequence for overpa-
ameterized estimation models could also be partly due to 

he EMs not being wholly correctly specified in the sense
hat the simulation operating model was a spatially explicit 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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opulation model and contained stochastic fish movement
nd fisher effort distribution. Consequently, there was al-
eady some background level of variation unaccounted for
n the spatially aggregated estimation models. The lack of
onsequence to specifying variability on selectivity when it
s not time-varying in the operating model has been noted
n other studies (Stewart and Monnahan, 2017 ; Cronin-Fine
nd Punt, 2021 ). In our case, the variance terms approached
ero in many cases if that specific process was not direction-
lly time-varying within the operating model, which in a prac-
ical application would likely lead to the analyst removing
he variation. In addition, we bounded the variance terms
t levels close to zero (e.g. −10 on ln scale). Had the vari-
nce terms been unbounded, this may have led to conver-
ence issues as the log SD approached negative infinity, and
hus would hopefully also lead to the analyst removing the 
ariation. 

Specific to catchability, the lack of consequence to speci-
ying variation in the estimation model when the operating
odel contained little or minimal variation in this parameter
ay be due to the fact that catchability was solely used within

he observation model and had no direct effect on the process
odel (outside of its effect on parameter estimates). Had a

ime series of effort been used in combination with catchabil-
ty to estimate fishing mortality within the estimation models
i.e. conditioning on effort), it is possible that the specification
f variation on this parameter would have been of more con-
equence when there was no variation present in the operating
odel. 

hen variation was modelled on the wrong 

rocess 

hen variation was modelled on the wrong process, i.e. catch-
bility or selectivity was directionally varying in the operating
odel; however, variation was modelled on a different pro-

ess in the estimation model, the consequences were large but
ere specific to modelling variation in natural mortality. No-

ably, at the largest sample sizes in OMs 3–4, coincidentally
he same cases where including process variation in selectiv-
ty led to large improvements, there was great consequence
o incorrectly specifying variability on natural mortality using
 random walk (and to a smaller degree at moderate sample
izes), as terminal year estimates were substantially more bi-
sed than all other EMs that did not include process variation
n natural mortality. In these cases, variation in natural mor-
ality accounts for what is actually variation in fishery selec-
ivity and is confounded with parameters defining recruitment
recruitment variation and unfished recruitment), in so doing
esulting in greater bias. The same confounding was present
n all the 2D AR(1) natural mortality models, even in cases
here the SD term for the 2D AR(1) formulation was close

o zero (largest sample sizes for OMs 1–2), highlighting very
mall changes in M a, y have a large effect on the model. How-
ver, the bias could be reduced and coverage improved in the
andom walk case and to some degree in the 2D AR(1) case
hen variation was also modelled on the correct process (se-

ectivity in this case), evidenced by the sensitivity model runs.
he LN outperforming the DM at large sample sizes in cases
here variation in natural mortality was estimated, by not

eading to either as severe bias in relative error or coverage
or depletion, is likely due to the modelling of correlations in
omposition residuals [with the LN AR(1)] and allowing for
ore residual variation in fits to the composition data (Fisch et
l., 2021 ), leading to less variability being modelled with devi-
tions in natural mortality. This is evidenced by distributions
f the estimated standard deviation parameter for the random
alk and 2D AR(1) formulations of natural mortality, which
ere greater for DM than LN ( Figure 6 ). 
Notably, we did not examine operating models where nat-

ral mortality was time-varying. Had we modelled time-
ariation in natural mortality within the OM, it is conceivable
hat an EM with process variation modelled on fishery selec-
ivity would have performed poorly by attempting to account
or what was actually variation in natural mortality through
electivity deviations, similar to what was observed in the op-
osite case. 
These results suggest that specifying variation on pro-

esses other than recruitment should be modelled with caution
ithin fisheries assessments, especially for variables likely to
ave a large impact on population processes and projections
e.g. natural mortality compared to an observation model
atchability parameter). Szuwalski et al. (2018) outline a few
ays that plausible time-varying processes may be narrowed
own using model diagnostics, such as applying assessment
ethods that allow each process to vary in turn and removing

rom consideration models that do not eliminate retrospec-
ive patterns or whose composition residuals indicate model
isspecification. Importantly, other than observing whether

he hessian matrix was positive-definite, given the scale of our
imulations, we were not able to examine additional model
iagnostics for each individual simulation iteration, such as
hose suggested by Szuwalski et al. (2018) . Doing so could
ave led to removing a process variation treatment that per-
ormed poorly in an additional convergence metric [e.g. 2D
R(1) natural mortality]. 

ikelihoods 

he performance of EMs fit with the logistic normal was
nly comparable to those fit with the Dirichlet-multinomial
t the largest sample sizes, similar to Fisch et al. (2021) . At
hese levels, however, it did outperform in the DM in many
nstances and notably was more robust to incorrectly mod-
lling variation in natural mortality within the EM. In short,
onditional on a large sample size, getting the process model
rong favoured the LN, particularly for processes closely

inked to composition data, whereas a more correct process
odel favoured the DM. 
Although the patterns were similar to Fisch et al. (2021) , in

omparing likelihoods we did not see the logistic-normal show
ess bias than the Dirichlet-multinomial in the OM treatments
hen there was significant model error unaccounted for in the

stimation model, as was observed in Fisch et al. (2021) when
he composition sample size was large. The logistic-normal
mproved in performance to a point where it was as biased
s the Dirichlet-multinomial; however, not clearly less-biased,
lthough it did have better confidence interval coverage. This
ould be a function of differences in the time series length (40
ears compared to 100 in Fisch et al., 2021 ). In fact, the base-
ine EMs fit to OMs and SMs with 80-year time series of data
sing the same composition sample size levels resulted in the
N exhibiting less bias than the DM for models with direc-

ional variation in selectivity unmodelled in the assessment
OMs 3–4), and as much bias when selectivity was not di-
ectionally varying in the operating model (OMs 1–2). This
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suggests that there may be a multiplicative effect of sample 
size coupled with time series length where more data leads 
to better characterization of the residual variance–covariance 
matrix and consequently more optimal performance of the 
LN likelihood compared to the DM when used for fishery 
composition data. It also suggests there is likely an effect re- 
garding which process is misspecified, where the LN did not 
outperform the DM when the misspecification was on catch- 
ability. This makes intuitive sense as composition data have 
a great influence on selectivity and a more indirect impact on 

the fishery catchability. There is also likely an effect regarding 
the degree of model misspecification specific to a process. The 
EMs developed in this study were most similar to the “Base- 
line” scenario from Fisch et al. (2021) , where the shape of 
selectivity was approximately correct; however, the time vari- 
ation was not accounted for. In the maximum process error 
(i.e. “Max PE”) scenario within Fisch et al. (2021) , the shape 
of the selectivity was also incorrect (logistic when the true se- 
lectivity was dome-shaped), and this led to further improved 

performance of the LN compared to the DM even at moderate 
sample sizes ( ∼2000 annually). We did not include such mis- 
specified estimation models within this study, and it remains 
to be evaluated whether this type of error is best allocated to 

gaussian-based random effects or generalized sampling distri- 
butions such as the logistic-normal. 

Although the variance parameters for each composition 

likelihood estimated more overdispersion as clustering in 

composition data increased, controlling for sample size the 
degree of clustering had little impact on performance met- 
rics. In Fisch et al. (2021) , it was suggested that overdispersion 

may not affect point estimates; however, confidence intervals 
would be affected if the composition likelihood did not ade- 
quately account for the increased sampling variance regard- 
ing the clustering treatments. There was indeed an effect on 

confidence interval coverage, as was suggested, and this effect 
was particular to the estimation models fit with the Dirichlet- 
multinomial, suggesting that the DM variance is not fully ac- 
counting for the increased sampling variance and/or structure 
of the variance regarding the clustering treatments. Although 

we do emphasize that this effect was minimal. It could be that 
levels of correlation and overdispersion in the data we simu- 
lated are less than those in some real systems, in which case 
there may be both a greater effect on confidence interval cov- 
erage when using the Dirichlet-multinomial and, as alluded 

in the overparameterization section, a greater effect of pro- 
cess variance formulations fitting to noise in composition data 
(rather than actual variation in processes). 

Estimability 

Mixed effects and state-space population and assessment 
models where both process and sampling error variances are 
estimated are a growing body of literature (Nielsen and Berg,
2014 ; Cadigan, 2015 ; Albertsen et al., 2016 ; Miller et al.,
2016 ; Xu et al., 2020 ; Stock et al., 2021 ), and this study is 
certainly not the first to estimate sampling variance of com- 
position data and process variance simultaneously within an 

assessment. However, few to our knowledge have examined 

the effect that multiple degrees of correlation and overdis- 
persion in composition data and the choice of observational 
likelihood used might have on estimation and identifiability 
within a simulation framework. Nonetheless, their findings of- 
fer important insight to these topics. 
Albertsen et al. (2016) examined the performance of var- 
ous observation likelihoods for fitting either composition 

ata (as proportions) or catch-at-age data (as real numbers) 
ithin state-space assessment models of four different Euro- 
ean stocks. They utilized AIC to compare the performance of
he likelihoods and found that for assessments fit to composi-
ion data, the logistic-normal (both additive and multiplicative 
ormulations) had better model fits than the Dirichlet distri- 
ution. Their parameterization of the state-space assessments 
t to each stock estimated process variation parameters as- 
ociated with additive deviations on log fishing mortality at 
ge and log numbers at age (Nielsen and Berg, 2014 ), and
ampling variation parameters associated with the Dirichlet 
nd logistic-normal. Two of the four assessments for which 

e were able to find sample sizes (ICES, 2020 ; De Oliveira
nd Walker, 2021 ) suggest that sample sizes were consistently
 10000 annually for each, which likely aided in parameter

stimation and identification and could have resulted in the 
ogistic-normal outperforming the Dirichlet. 

Xu et al. (2020) evaluated the ability of an estimation model
o estimate sampling variation of composition data using the 
irichlet-multinomial while accounting for time-varying fish- 

ry selectivity. They simulated composition data under differ- 
nt sample sizes using the multinomial and found that the esti-
ation model was able to estimate the level of effective sam-
le size and account for time variation in fishery selectivity.
owever, in an effort to replicate an assessment model pro-

ess in Stock Synthesis, they did not simultaneously estimate 
he variance parameters internal to the assessment. They in- 
tead utilized an iterative approach (EM3 of Xu et al., 2019 ),
here first the variance term of the age and year autocor-

elated selectivity was tuned using the method proposed by 
ethot and Taylor (2011) , and correlation parameters were 

hen estimated by fitting an external model to the selectivity
eviations from the model fit of the tuning approach using the
ultivariate normal distribution. All three parameters were 

hen fixed in the actual assessment model run. They concluded 

hat although the three hyperparameters were estimated with 

 negative bias when correlation existed within the operat- 
ng model, it was encouraging that the median values were
 50% of the true correlation level. Also, when there was no

orrelation within the operation model, they were able to pro-
uce minimal estimates of the correlation parameters. Using 
n iterative approach such as this may have helped us allevi-
te some of the imprecision we experienced at smaller sample
izes; however, our goal was to estimate variances within as-
essments and ideally improve upon iterative estimation meth- 
ds. 
Stock et al. (2021) implemented 2D AR(1) random effect 

eviations either on natural mortality or survival with an as-
essment of southern New England–mid-Atlantic yellowtail 
ounder and concluded that including the deviations on either 
rocess considerably improved model fit and reduced retro- 
pective patterns. They estimated a sampling variance param- 
ter for the logistic-normal likelihood for fitting composition 

ata (however, they did not include correlation in the logistic-
ormal parameterization), the variance in recruitment, and the 
hree hyperparameters of the 2D AR(1) parameterization si- 
ultaneously within a mixed-effects framework using TMB.

n addition to the commercial catch and age composition, the
ssessment was fit to indices of abundance and age composi-
ions from three bottom trawl surveys, suggesting a non-trivial 
mount of informative data to supplement what was collected 
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rom the fishery. The amount of different composition data
ources likely aided in the estimation of the process variation
yperparameters. 
Cadigan (2015) developed a state-space, age-structured as-

essment model for Northern Cod and estimated a suite of
ariance terms related to both process and sampling varia-
ion. He specified 2D AR(1) deviations on natural mortality
nd parameterized fishing mortality as in Nielsen and Berg
2014) . He also estimated a variance term for fits to the com-
osition data, using what he called a continuation-ratio logit
ikelihood. He ultimately found that without the inclusion of
agging data, the process variance parameter was highly con-
ounded with sampling error variance. 

Collectively, these studies highlight that incorporating both
rocess variation as random effects and estimating the extent
f the variation internal to the model, in addition to sampling
ariation, is possible provided high-quality data from compo-
itions and other sources (e.g. tagging) is available. Our study
upports this, but also adds that the implications of placing
ariation on the incorrect process are serious for management
dvice. 

We have presented a data-rich and somewhat ideal sce-
ario. Consequently, there may have been some specifications
n our simulations that could have influenced results. We only
imulated a two-way trip effort time series and a single fish
pecies life history with a single degree of recruitment varia-
ion, which was a reasonably low degree compared to other
pecies (Thorson et al., 2014 ). We also fixed the natural mor-
ality scalar parameter, steepness, the variance of annual catch,
nd the variance of the fishery index at correct values within
ur estimation models, and the estimation or misspecification
f these parameters could have influenced results. The esti-
ation models were also privy to an informative survey with

onstant catchability and constant, asymptotic selectivity for
he second half of the time series, which may have aided in
oth the estimation of time-varying fishery catchability and
ime-varying fishery selectivity. The estimation models were
nitialized from an unfished state (a correct assumption given
perating models), with fishery catch, composition, and index
ata available in the first year. This likely aided in parame-
er estimation. We did suppress zeroes in composition data,
hich the logistic-normal requires; however, the Dirichlet-
ultinomial does not, although this is unlikely to have influ-

nced results as zeroes did not occur commonly in the data
rior to suppression. We encourage further research explor-
ng the impact of the mentioned variables with respect to the
erformance assessments when both process variances and
ampling variances of composition likelihoods are estimated.
e also encourage additional evaluation of the multivariate

weedie (Thorson et al., 2022 ), which in our simulations per-
ormed no worse than the Dirichlet-multinomial, although we
id not include it within estimation models that incorporated
rocess variation in quantities other than recruitment. 

ummary 

e grant that modelling random effects to account for pro-
ess variation is suboptimal compared to a thorough under-
tanding of the fishery coupled with the availability of data
egarding an environmental or mechanistic link to model the
ctual mechanism giving rise to the variation (Cao and Chen,
022 ). However, in the absence of such data and understand-
ng, we have shown that under the circumstances evaluated in
his study, parameters defining the extent of process variation
n selectivity or catchability can be estimated concurrent with
ecruitment variation and multiple sampling variation param-
ters. Notably, the autoregressive process variation methods
erformed very well when fit to what was actually variation
mergent from a spatially explicit operating model as a func-
ion of stochastic fish movement and fisher effort distribution,
ather than simulated from the same autoregressive process in
 non-spatial context. Process variation should, however, be
odelled with caution in these circumstances, as our study as
ell as others (Szuwalski et al., 2018 ) suggest estimates and
anagement advice could be heavily biased if placed on the
rong process. 
In sum, it does seem risky to utilize the LN for fitting

omposition data within stock assessments, and the Dirichlet-
ultinomial appears a prudent choice in most circumstances.
owever, if a stock assessment includes a lengthy time series

f large sample sizes for composition data (albeit a high bar),
n analyst may be better off fitting composition data with the
N as opposed to the DM given it performs equivalently when

he model specification is largely correct and often better when
here is unmodelled variation in fishery selectivity (and this is
ikely to be extended to other processes that are closely linked
o composition data). Moreover, the LN was more robust to
ncorrectly placing process variance on natural mortality in-
tead of fishery selectivity. In addition, in real-world situations,
he degree of model misspecification is likely to be greater than
hat within simulation experiments, which we have shown fur-
her favours the logistic-normal compared to the Dirichlet-
ultinomial. Herein, we focused on modelled, unmodelled,
r incorrectly modelled process variation and we encourage
dditional research on this topic to include systematic model
isspecification and its effect on the estimation of both sam-
ling and process variance within fisheries assessments. 
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ppendix A 

he spatially explicit operating model is based on Gulf of
exico red snapper, as such most life history parameters were

aken from the most recent stock assessment (SEDAR, 2018 ).
he operating model is structured by year, age, and space. The
odel runs for a desired number of years which experience
shing after an unfished initialization period of 50 years. As
oted in the methods, 40 years of fishing were simulated. The
ges modelled start at age 0 and include a plus group at age
0. The abundance at age within a spatial cell is calculated
sing 

 y,a,c = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

R y 
ˆ ˆ X c i f a = 0 ∑ 

c ′ 
X y,a,c ′ ,c 

[ 
N y −1 ,a −1 ,c ′ e −( F y −1 ,a −1 ,c ′ + M a −1 ) 

] 
i f 0 < a < 20+ ∑ 

c ′ 
X y,a,c ′ ,c 

[ 
N y −1 ,a −1 ,c ′ e −( F y −1 ,a −1 ,c ′ + M a −1 ) + N y −1 ,a,c ′ e −( F y −1 ,a,c ′ + M a ) 

] 
i f a = 20+ 

,

here N y,a,c is the abundance at age a in year y that is in spatial
ell c (a cell in the grid), R y is the global recruitment of age-0

sh in a given year, ˆ ˆ X c is the proportion of recruits allocated
o cell c , F y −1 ,a −1 ,c ′ is the instantaneous fishing mortality in a
iven cell for an age and year, M a is the natural mortality for
n age, and X y,a,c ′ ,c denotes the proportion of individuals of
 given age that move from cell c ′ to c (age 0s do not move).
ovement is assumed to occur instantaneously at the start

f the year. Global recruitment is calculated using the steep-
ess parameterization of the Beverton–Holt stock recruitment
unction (Mace and Doonan, 1988 ) 

R y = 

4 hR 0 SB y 

SB 0 
(
1 − h 

) + SB y 
(
5 h − 1 

) , 

here h denotes steepness (the proportion of unfished re-
ruitment produced at 20% of the unfished spawning stock
iomass), SB y denotes spawning biomass ( SB y = 

∑ 

a 
N y,a F ec a ,

here F ec a represents a combined fecundity/maturity ogive),
 0 denotes unfished recruitment, and SB 0 unfished spawning

tock biomass. Recruits are allocated to spatial cells based on
heir depth and substrate preference (see movement section)

sing ˆ ˆ X c . Note that the recruitment spatial distribution is in-
ependent of year (and thus density). 

perating model parameterization 

he red snapper stock assessment (SEDAR, 2018 ) spans the
ntire Gulf of Mexico contained within the United States Ex-
lusive Economic Zone. To make computation feasible, the
patial extent of the spatially explicit operating model was de-
reased to span the Florida Gulf of Mexico coastline from 10
o 500 m in depth. The model is divided into 0.1 decimal-
egree areas, resulting in 1559 individual spatial cells. The
estern spatial extent of the model was cut off at −87.5 

◦ lon-
itude (roughly the border of Florida), while the southern ex-
ent was cut off at 24.5 

◦ latitude. 
Due to the differences in the spatial extent between the

patially explicit operating model in this study and the Gulf
f Mexico red snapper assessment, some population param-
ters from the assessment had to be adjusted to account for
he smaller geographic area. The GOM red snapper assess-
ent allocates total recruits each year to the western GOM

mean ∼64%) and eastern GOM (mean ∼36%), split by the
ississippi River. In 2016 and for the assessment projection

o 2076, this apportionment was 23% to the eastern GOM
nd 77% to the western GOM. To obtain the unfished re-
ruitment for Florida waters, we calculated the proportion of
ecruits in the eastern GOM (using the 2016 estimate) that
ould occur in Florida waters based on availability of habi-

at for recruitment. We did this by dividing the spatial cells
ith depths from 10 to 70 m in Florida waters by the to-

al spatial cells with depths from 10 to 70 m in the eastern
OM (eastern GOM longitudinal cutoff −89 

◦). The depth
utoff of 70 m was chosen as this is roughly equivalent to
he mean + 2 SD of depth preference of an age-0 red snap-
er (see movement section). Unfished recruitment of red snap-
er for Florida (and thus the spatial model) was then cal-

http://dx.doi.org/10.1093/icesjms/fsac159
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culated as the product of unfished recruitment for the entire 
Gulf of Mexico (1.63E8), the proportion of recruits allocated 

east of the Mississippi (23%), and the proportion of recruits 
in the east zone that are allocated to Florida ( ∼90%). Equi- 
librium spawning biomass for Florida was then calculated 

by projecting this new unfished recruitment to a plus group 

at age 20 using a natural mortality ogive, multiplying each 

value by its age-specific fecundity, and summing across the 
values. 

Parameterizing movement 

The movement matrix is calculated based on a probability 
function of cell attributes, including depth, substrate type, dis- 
tance to a cell, and density of fish in a spatial cell. We based 

our movement modelling on preference-type movement from 

the spatially explicit stock assessment platform/programme 
Spatial Population Model (Dunn et al., 2012 ). Movement of 
this type has been conducted for Ross Sea Antarctic Tooth- 
fish (Mormede et al., 2017 ), which exhibit a similar on- 
togenetic movement offshore to red snapper. To formulate 
movement, the preference for each spatial attribute type ( i ) 
is defined based on some function f i ( θi , A i,c ) , where θi are 
the parameters of a function for a given attribute type and 

A i,c is the value of the specific attribute for that type and 

spatial cell. Given four attribute types chosen in our model 
(depth, distance, density, and substrate), the total preference 
of each cell is then the product of the individual preference 
functions 

p c = 

∏ 

i 

f i ( θi , A i,c ) . 

The probability of moving from cell c ′ to any other cell c is 
then defined as the preference of moving to cell c divided by 
the sum preference of all the cells. 

X y,a,c ′ ,c = 

p y,a,c ∑ 

c 
p y,a,c 

Note the preferences in the above formula are year and 

age specific. The spatial distribution of recruits was calculated 

solely using the depth and substrate preference functions 

ˆ ˆ X c = 

ˆ ˆ p c ∑ 

c 

ˆ ˆ p c 

. 

Variation was added in movement and the spatial distribu- 
tion of recruits using the multinomial distribution. 

Preference functions 

Spatially referenced red snapper catch at age data was com- 
piled from the US Gulf of Mexico reef fish bottom long- 
line and vertical line observer databases. This database con- 
tained captures-at-age for red snapper ages 0–10. We com- 
piled catches at age across gears and classified them into the 
0.1 decimal degree grids. These data were not standardized for 
effort. We cross-referenced capture locations with depth and 

substrate shapefiles to create movement preference functions. 

Depth 

The preference function for depth was age-specific. Depth 

information for the GOM was collected from Becker 
et al. ( 2009 ; https://topex.ucsd.edu/cgi-bin/get _ srtm30.cgi ).
This data set was at a more fine resolution than the spatially 
xplicit grid, in 30-arc s (30 arc s = 0.0083 decimal degrees).
or this reason, depth values for each spatial cell within the
odel were calculated as the mean depth (of 30-arc-s data)
ithin the cell. The mean and variance in depth of capture

or each age was calculated and a Von-Bertalanffy function 

as fit through these values (with age as the explanatory vari-
ble) so as to capture the asymptotic nature of these two rela-
ionships as fish aged. The depth preference function for each
ge was then characterized as a normal distribution using the
ean and variance of capture depth (from the Von-Bertalanffy 

unctions). 

ubstrate type 
he preference function for substrate type was calculated as

he percentage of red snapper at age that were captured on a
pecific substrate type. Bottom substrate data were collected 

rom the NOAA Gulf of Mexico Data Atlas ( https://www.nc
dc.noaa.gov/website/DataAtlas/atlas.htm ). Substrate classes 

ncluded rock, gravel, sand, and mud, and are divided into
ominant classifications if the most abundant fractions of the 
ubstrate classes are > 66%, and subdominant classifications 
f the most abundant fraction is > 33%, resulting in eight sub-
trate classes. 

istance 
he distance preference function, referencing the distance 

rom one cell to another cell, was modelled as an exponen-
ial decay by Euclidean distance in km from the midpoint of
he cell. 

e −λD ×km 

The decay rate ( λD 

) was parameterized using tag–recapture 
ata on red snapper. We fit an exponential decay model using
aximum likelihood to the distance red snapper travelled in 

 year, corrected for time at liberty. We omitted all recaptures
here fish spent < 200 d at liberty, as the daily movement rates
ere much higher for fish that spent < 200 d at liberty. Tag–

ecapture data on red snapper was obtained from Addis et al.
 2013 ). 

ensity 
he density preference function was modelled as an exponen- 

ial decay below a density threshold (Bentley et al., 2004 ). { 

1 , D ≤ D 

∗

1 

/ ( D 

D 

∗
)λDD 

, D > D 

∗

The quantity D describes density of fish in a cell, and was
haracterized as the sum of the squared lengths of fish within
 cell ( 

∑ 

a 
N y,a L 

2 
a , where L a refers to the length of a fish age

 ). The density threshold D ∗ was arbitrarily set at the 75%
uantile of the unfished densities (year one of the model) in
ach cell. The decay rate, λDD 

was arbitrarily set at 0.5. 

ishing 
otal effort in each year was simulated by first defining the
verage effort as a logistic increase from year 51 (first year
fter 50 years of no fishing) to 75% of the fishing time se-
ies (year 80 for a 40-year fishing time series), followed by a
inear decrease in effort for the final 25% of the time series
 Supplementary Table 1 ). This was done to simulate the early
evelopment of a fishery, followed by a management regime 
tarting in the second half of the fishing time series. Variabil-

https://topex.ucsd.edu/cgi-bin/get_srtm30.cgi
https://www.ncddc.noaa.gov/website/DataAtlas/atlas.htm
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad138#supplementary-data
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ty was then added to the average effort timeseries by drawing
rom a normal distribution with a specified CV (set at 0.25),
o obtain the total effort in each year. 

Effort was assumed to originate from a port at the coast-
ine centre point for the 23 coastal counties in Florida that
order the Gulf of Mexico. Units of effort (from the total ef-
ort expended in the fishery that year) were allocated to each
ndividual port based on relative population size within each
oastal county with variation added by drawing from a multi-
omial distribution. 
In one formulation of the operating model, the amount of

shing effort each spatial cell received in each year from a
iven port was modelled using a gravity model, which assumes
he share of the total effort allocated to each spatial cell is pro-
ortional to the relative economic “attractiveness”of that cell,
here attractiveness is proportional to the expected profitabil-

ty of a cell based on resource availability and cost (Caddy,
975 ; Walters and Bonfil, 1999 ). We assumed resource avail-
bility or profit as a function of exploitable biomass of a cell
nd that cost was a function of the distance to a cell. This al-
owed us to model the effort allocated to spatial cells from a
ort as positively associated with the exploitable biomass of
ells and negatively associated with the distance of cells from
he port. This is conceptually identical to preference move-
ent in that fishers have preference probabilities for fishing

n each cell depending on the exploitable biomass in that cell
t the start of the year, and the distance of that cell from their
ort. The distance function was modelled as a negative ex-
onential decay (with one parameter λF D 

). The exploitable
iomass profit function was modelled as a logistic function
here the midpoint was adjusted each year to be the median

xploitable biomass across all cells, so as to account for shift-
ng baselines. The probability a unit of effort was allocated to
ell c from port p was then calculated as 

P 
(
E p,c 

)
y = 

e −λFD ×km p,c × 1 
/ [ 

1 + e { −γ×( EB y,c −median c ( EB y ) ) } ] 
∑ 

c 

[ 
e −λFD ×km p,c × 1 

/ [ 
1 + e { −γ×( EB y,c −median c ( εβy ) ) } ] ] . 

here P( E p,c ) denotes the probability a unit of effort will go
rom port p to cell c , km p,c denotes the kilometers from a port
o a cell, and EB y,c denotes the exploitable biomass in a cell
 

∑ 

a 
N y,a,c cs a w a , where cs a and w a refer to contact selectivity

nd the weight at age, respectfully). 
In an alternative formulation of the operating model, ef-

ort can be distributed randomly over space. The random ef-
ort distribution OM formulation proves particularly useful
n simulation testing estimation models which are largely cor-
ectly specified in their processes. Variation in effort allocation
or each OM formulation was included using the multinomial
istribution with probabilities calculated from either the grav-
ty model or the random distribution and sample size as the
otal amount of effort originating from a port in a given year.
 baseline of at least 1 unit of effort was assumed for all cells
uring active fishing years. 
Fishing mortality for each cell was simulated using a fish-

ry catchability parameter, which defined the proportion of
bundance in a cell caught per unit effort (thus it is the catch-
bility within that cell, cq ) and a logistic fishery selectivity,
hich modelled the selectivity of fish at age within a cell ( cs a ).
he logistic fishery selectivity simulates a contact selectivity,
iven within a spatially explicit model, the need for a spatial
vailability component of selectivity is removed (as this is rep-
c  
esented in effort and movement dynamics). 

F y,a,c = cq × cs a × E y,c 

To create dome-shaped selectivity within the OM where ef-
ort is randomly distributed over space, we changed the fish-
ry contact selectivity solely within this OM formulation to be
ome-shaped according to a double-normal functional form
Methot and W etzel, 2013 ). W e provide mathematical detail
f the double-normal in Appendix B . 

rocess variation 

rocess variation was included in recruitment using a lognor-
al distribution (log scale standard deviation set at 0.3), total

ffort time series using a normal distribution (with CV), and
sh movement, the spatial distribution of recruits, the propor-
ion of total effort allocated to each port in each year, and
he probability of fishing spatial cells from a port using draws
rom multinomial distributions. 

ampling model 

ishery age composition 

he observed fishery catch age composition was simulated by
ampling the catch at age from a subset of units of effort. This
an be thought of as analogous to sampling the catch of a
ubset of trips. 

The SM sampled a pre-specified percentage of the to-
al effort in the fishery each year (identified in main text).
ampling effort at each port was proportional to its effort
llocation with variation added by drawing from a multi-
omial distribution. The spatial cells sampled from a given
ort were drawn with replacement with probabilities equal
o the probability of fishing spatial cells from that port (in a
iven year). This is equivalent to sampling units of effort from
ach port. The catch at age in a “sampled” spatial cell was
ampled using the multinomial distribution with sample size
qual to a pre-specified proportion of the total number of fish
aught for one unit of effort in the cell (specified in the main
ext). This was designed to allow for proportional sampling
f the catch at age in sampled cell (to account for different
bundances in cells). To obtain the total age composition
or the year, the catch-at-age samples were aggregated across
patial cells and ports for a year. A small constant (1E-5) was
dded to suppress zeroes in the aggregated age composition
ata (and renormalized). 
Overdispersion in the pooled age composition sample

as assessed by repeating the sampling process 100 times.
his generated 100 age composition datasets for each year,

o facilitate the calculation of variance within age bins
cross the replicates. This variation was compared to the
ampling error that would be expected had the samples
ome from a multinomial distribution with the same sam-
le size and expected proportions from the true catch at age
 Figure 2 ). 

ishery independent survey age composition 

ishery independent surveys were simulated by randomly
ampling spatial cells in the matrix at the start of the year.

ithin a year, a pre specified number of spatial cells were
o be sampled (50). The cells chosen to be sampled were
andomly drawn with replacement from all spatial cells.
nce a cell was chosen, the vulnerable numbers at age in a

ell ( cs a × N y,a,c ) were sampled using the multinomial with
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sample size equal to the total vulnerable numbers at age 
in a cell multiplied by a fishery-independent catchability 
parameter defining the proportion of abundance in a cell 
caught per unit survey effort. The same contact selectivity 
was used for the survey as for the fishery (simple logistic).
The observed survey age composition for each year was then 

calculated by aggregating samples across cells within a year.
Zeroes were suppressed using the same procedure described 

for fishery-dependent compositions. 

Fishery independent index 

A fishery-independent index of abundance was simulated by 
summing survey catches for each year and dividing by the total 
number of cells sampled in that year (or the total survey effort,
i.e. 50). 

Appendix B 

Double-normal selectivity 

The double-normal selectivity function was parameter- 
ized with six parameters ( B1 –B6 ) as in Methot and 

Wetzel (2013) 

cs a = asc a × ( 1 − j1 a ) + j1 a ×
[
( 1 − j2 a ) + j2 a × dsc a 

]
. 

Where j1 , j2 , asc , and dsc , can be found using 

j 1 a = 

[
1 + e 

(
−20 a −B 1 

1+ | a −B 1 | 
)]−1 

, j 2 a = 

[
1 + e 

(
−20 a −peak 2 

1+ | a −peak 2 | 
)]−1 

, 

asc a = 

(
1 − e −B 5 )−1 + 

[ 
1 − (

1 + e −B 5 )−1 
] 

× e 
[ 

−( a −B 1 ) 2 

e B 3 

] 
− e 

[ 
− ( min ( a ) −B 1 ) 2 

e B 3 

] 

1 − e 
[ 
− ( min ( a ) −B 1 ) 2 

e B 3 

] 

dsc a = 1 + 

[ (
1 + e −B 6 )−1 − 1 

] e 
[ −( a −peak 2 ) 

e B 4 

] 
− 1 

e 

[
−( max ( a ) −peak 2 ) 2 

e B 4 

]
− 1 

, 

peak2 is calculated using 

peak 2 = B 1 + 1 + 

[
0 . 99 × max ( a ) − B 1 − 1 

1 + e −B 2 

]
. 
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The parameters specified used within the operating model 
ere B1 = 2.667, B2 = −15.885, B3 = 0.4, B4 = 1.372, B5
 −4.010, and B6 = 0.375 ( Supplementary Table 1 ). These
arameters were chosen to resemble the shape of the realized
electivity, which emerged from the gravity model formulation 

f the OM ( Figure 1 ). 

ppendix C 

or the logistic-normal negative log-likelihood [ Table 3 , Equa-
ion (3.8)], V y = KC y K 

T , where K is a matrix with dimensions
 ( b − 1 ) , b ] formed by adding a vector of −1 s to the right side
f an identity matrix with dimensions [ b − 1 , b − 1 ] , and x is
 matrix where each row depicts a year and contains a vector
f length ( b − 1 ) , filled according to 

x y,a = log 
(

P a,y 

P b,y 

)
− log 

( 

ˆ P a,y 

ˆ P b,y 

) 

for a in 0 , 1 , 2 , ..., b − 1 . 
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